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ABSTRACT 

This paper provides several new criteria for a ring to be a complete 

matrix ring. Some applications demonstrate their efficacy; and their rela- 
tive strengths are indicated by calculating the structures they impose on 
universal algebras. 

In troduct ion  

S t i m u l a t e d  by  a q u e s t i o n  of C h a t t e r s  [4], several  recent  papers ,  such as C h a t t e r s  

[5], Levy, R o b s o n  a n d  Stafford [7] a n d  R o b s o n  [8], have inves t iga ted  t e c h n i q u e s  

e n a b l i n g  iden t i f i ca t ion  of comple t e  n x n m a t r i x  r ings.  T h i s  pape r  is a c o n t i n -  

u a t i o n  a n d  i m p r o v e m e n t  of [8], in  which  i t  was shown,  for a r ing  R, t h a t  the  

fol lowing c o n d i t i o n s  are equiva len t :  
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(i) R is an n × n ma t r ix  ring; 

(ii) R contains elements  f ,  a such tha t  f n  = 0 and 

a f  ~-1 + f a f  ~-2 ÷ . . .  + f n - l a  = 1; 

(iii) R contains elements f ,  a l ,  a 2 , . . . ,  as  such t ha t  f~  = 0 and 

a l f  ~-1 + f a 2 f  ~-2 + . . .  + f n - l a  n = 1. 

The  first section of this paper  s tar ts  by providing two fur ther  cr i ter ia  each 

involving three  elements  and each a substant ia l  simplification of (ii) and (iii); 

namely  

(iv) R contains  elements f ,  a, b such tha t  f~  = 0 and a f  ~-1 + fb  = 1; 

(v) R contains elements  f ,  a, b such t ha t  f~  = 0 and a f  M -k fNb  = 1, for some 

M , N  with  M + N - -  n. 

The  section ends wi th  a descript ion of an algebra universal  wi th  respect  to 

cri ter ion (iv). Section 2 then uses these results to consider cr i ter ia  similar  to 

(iv) and (v) but ,  like (ii), involving only two elements.  Here the s i tua t ion  is 

more  complex  and the  theory  is less complete.  The  final section gives fur ther  

applicat ions,  this t ime to rings of differential operators .  

Th roughou t ,  all rings are associative and, except  when s ta ted  otherwise,  have 

a 1. The  s t anda rd  ma t r ix  units of an n × n ma t r ix  ring M~(S) over some ring 

S will be  denoted by {ei~ }. On the other  hand,  when displaying a family  of 

elements  sat isfying the relat ions characterizing ma t r ix  units,  we will wri te these 

as {E~j }. 

1. T h r e e  e l e m e n t  r e l a t i o n s  

This  section concerns relat ions involving three elements  of a r ing R. T h e  first 

result  establishes one of the new criteria ment ioned in the introduct ion.  

THEOREM 1.1: The following conditions on a ring R are equivalent: 

(i) R is a complete n × n matrix ring; 

(ii) R contains elements a, b and f such tha t  f~ = 0 and 1 = a/~-1  + lb. | 

Proof'. (i) ~ (ii). Let {e~j} be  a complete  set of n × n ma t r ix  units  for R. We 

let a = el~, b = e12- l -c23+'"+en- l ,n  and f = e21+e32 + ' " + e n , ~ - l .  One can 

then  verify t ha t  f ~ - I  = e~l, t ha t  f~  = 0 and tha t  a f  n-1 q- fb  = 1, as required. 
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(ii) ~ (i). The argument  here concentrates on the n right ideals f f a f ~ - l R  

for r C {0, 1 , . . . ,  n - 1}. It  will be shown tha t  these right ideals are mutual ly  

isomorphic, and tha t  their sum is direct and equals R. Granted this, the regular 

representat ion then demonstra tes  tha t  R ~- M~ (End(a f ~ - l  R) ). 

We start ,  then, by noting tha t  

a f  ~-1 = a f n - l ( a f  n-1 + fb) = ( a f ' - l )  2 

since f~  = O. It  follows that ,  for each r C {O, 1 , . . . , n  - 1}, the two maps  

a f ~ - l R  ~ f f  a f n - l R  and f ~ a f n - l R  ~ a f '~ - lR  given by left multiplication, 

respectively, by f f  and a f  n - l -~  are mutual ly  inverse. This shows tha t  the right 

ideals are isomorphic. 

Next note tha t  

(1) 

1 = a f  ~-1 + fb 

= a f  n-1 + f ( a f  ~-1 + fb)b 

= a n - l b +  2 a n--1 a f ~ - l  + f f f ( f + fb)b 2 

n-1 f ~ - l a f ~ - l b n - 1  = a f  n-1 + f a f  b + . . .  + 

n - - 1  

since f n  = 0. Therefore ~ f f a f ~ - l R  = R. 

Finally, to see tha t  this sum is direct, suppose tha t  

0 = a f n - l x  0 + f a f n - l x l  -4-'" + fn-- lafn--lXn_ 1 

for some x~ E R. Left multiplication, in turn,  by af  n - l ,  f a f n - 2 , . . . ,  f n - l a  shows 

that ,  for each r, f f a f n - l x r  = 0. This is the final ingredient required. II 

Note 1.2: For what  follows, it is useful to observe, from the above proof, tha t  

left mult ipl ication by f gives the isomorphism f f - l a f ~ - l R  --+ f f a f ~ - l R  for 

each r E {1, 2 , . . . , n  - 1} and it maps f ~ - l a f ~ - l R  to zero. Thus, under the 

regular representation, f = e21 + e32 + " -  + e . . . .  1. Likewise a f  ~-1 = el l  and 

so f f a f  ~-1 = erl and fb  = 1 - e11. In fact, as the next result shows, one can 

describe, directly, the complete set of matr ix  units in terms of a, b and f ,  thereby 

also providing an alternative proof  of Theorem 1.1. 
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THEOREM 1 .3 :  Let R be a ring containing elements f ,  a, b such that fn  = 0 

and a f  n-1 + fb = 1. Then the set {E~j}, given by E~j = f~-laf '~-lbJ-1,  is a 

complete set of n × n matrix units for R. 

Proo~ Note first tha t  

E l l  + E22 + ' ' '  + Enn 

= af  '~-1 + faf '~- lb  + . . .  + f " - l a f n - l b n - 1  

=1  

as in (1). 

So it remains only to show tha t  E~jEke = 6jkEit; i.e. tha t  

( f i - l a f n - l b J - 1 ) ( f k - l a f - - l b e - 1 )  -_ 6jk(f~-lafn-lbe-1) .  

Therefore it will be enough to prove tha t  

(2) a fn - lbJ - l  f k - l a f  ~-1 = 6jkaf n-1 

for all j , k  C { 1 , 2 , . . . , n } .  

The proof  of this starts by noting tha t  

f~b ~ = f~-l(fb)b~-i  = f i - l ( 1  _ af , -1 )b  ~-1 

= (1 - f i - l a f " - i ) f i - l b ~ - i  

for 1 < i < n. Hence, using induction on i, 

Fb  ~ = (1 - F - l a f ~ - ~ ) ( 1  - F-~afn-~+l)  --. (1 - afn-~).  

Using this, we see tha t  

a fn - lbJ - l  f k - l a f  ,~-1 = afn-J ( f J - l b J - 1 ) f k - l a f ~ - i  

(3) 
=afn-J(1 - fJ-2af~-J+l)(1 - f J -3afn-J+2) . . .  (1 - a f n - 1 ) f k - l a f  n-1. 

We will simplify this last expression, start ing at its r ight-hand end, using the fact 

tha t  

(1 - fn -e+lafe) fk -1  = fk-1 
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whenever k -  l + e  > n, since f~  = 0. First, suppose tha t  j _< k. Then  (3) 

reduces to the equat ion 

a fn - lbJ - l  f k - l a f  n-1 = afn-J f k - l a f  n-1 

which, since f~  = 0 and (afn-1) 2 = a f  '~-1, verifies (2) in this case. Next, 

suppose tha t  j > k. Then  the simplification of (3) produces the equat ion 

a fn - lbJ - l  f k - l a f  n-1 = af f~-J(1-  f J -2a fn- j+l )  . . .  ( 1 - - f k - l a f n - k ) f k - l a f  n-1. 

However 

(1 - f k - l a f n - k ) f k - l a f  '~-1 =- f k - l (a f f~ - i  -- ( a f n - 1 )  2) ---- 0. 

Hence (2) holds for all j,  k. | 

Note 1,4: In fact, the set {E~j} obtained in 1.3 coincides with the set {e~j} 

arising from the regular representation in 1.1(ii). To see this, one notes, from 

1.2 and 1.3, tha t  Eil  = e i l  for each i. However, each matr ix  unit is charac- 

terized precisely by its action, via left multiplication, on the set of right ideals 

{ei lR : i = 1 , . . . ,  n}. Hence the two sets coincide. 

Next we aim at the second of the new criteria. It  is convenient first to prove 

two subsidiary results. 

LEMMA 1.5: Suppose that R is a ring, f E R and I, J are subrings of R, not 

necessarily with 1, such that J is closed under left and right multiplication by f . 

I f1  E I f  + f J  then 1 E I f  2 + J. 

Proo~ Suppose tha t  1 = af  + fb where a E I ,  b E J.  Then 

1 = a f  4- fb 

= a(1 - f b ) f  + f b +  b f -  (1 - a f )b f  

= a ( a f ) f  + ( fb+ b f -  (fb)bf) 

E I f  2 + J. | 
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COROLLARY 1.6: Suppose that R is a ring, f E R and N is a positive integer. 

Then 

1 E R f  + fN-1R 

1 E R f  2 ÷ f N - 2 R  

1 E R r  i ÷ f g - ~ R  

¢=~ 1 E R f  g-1 + fR .  

Proof: For each i E {1, 2 , . . . ,  N - 1}, both Rf f  -1 and f N - ~ - I R  are subrings 

closed under left and right multiplication by f .  The result follows using Lemma 

1.5, together with its left-right symmetric version. I 

The next result establishes the second new criterion, which provides greater 

symmetry in the roles of a and b. 

THEOREM 1.7: For a ring R and positive integers m and n, the following 

conditions are equivalent: 

(i) R = Mm+n (S) for some ring S; 

(ii) R contains elements a, b and f such that fm+~ = 0 and a f  TM + f'~b = 1. 

Proof" To prove (i) ~ (ii) note that the elements 

a ~ el,m_~_ 1 ÷ e 2 , m . ~ 2  -~ • " - "-~ en,ra.t_ n 

b = e l , n + l  ÷ e 2 , n + 2  ÷ "" ' ÷ em,m+n 

f - -  e21  ÷ e32  ÷ " ' "  ÷ gm+n,m+n--1 

in M,~+n (S) satisfy the equations in (ii). 

Conversely, assume a, b, f E R are as described in (ii). Since 1 E R f  m + f a r  

then Corollary 1.6 asserts that 1 E R f  m+~-I + fR .  Then Theorem 1.1 shows 

that  R ~- M,~+n(S) for some ring S. I 

We end this section by considering a universal example of R as in Theorem 1.1. 

Here and later, it will be useful to consider not only algebras over a commutative 

ring k but,  more generally, over a noncommutative ring k, with the understanding 

that  all generators are k-centralizing; i.e. commute with all elements of k. 
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THEOREM 1.8: Let R be an algebra which is freely generated over some non- 

commutative ring k by three elements a, b and f subject onIy to the relations 

fn  = 0 and 1 = a f  ~-1 + lb. Then R ~ M~(S) with S being a free k-algebra in 

n 2 indeterminates. 

Proof." One knows from Theorem 1.1 tha t  R is a full ring of n x n matr ices  and 

tha t  f ,  a f  n-1 and fb are as specified in Note 1.2. The  conditions t ha t  these 

requi rements  lay upon  the entries of a and b, when viewed as n x n matr ices,  

specify t ha t  

i ""  * 1 
. . .  ~ 0 

. . .  

. . .  ~ 0 

, b =  

( ~  1 0 . . .  0 

0 1 . . .  0 
" . .  

0 0 . . . .  1 
:4: ~ . . .  

w h e r e ,  denotes a rb i t r a ry  elements. To see tha t  R ~- M~(S) with S of the form 

claimed we argue as follows. 

In M n ( k ( x l , . . . ,  xn2}) one can construct  two matr ices  a' and b' of the same 

form as a and b above, with the * entries being filled by the n 2 inde terminates  

x/. There  is thus a mapp ing  

fl: k(a', b', f l  -~ R 

given by f l(a ' )  -- a, fl(b') -- b, f l ( f )  = f .  However, since a ' ,  b' and f sat isfy 

the relat ions imposed on a, b and f ,  then  fl has an inverse. So R "" k(a ~, b', f ) .  

One can verify easily t ha t  the elements a', b', f E M~(k (X l , . . .  ,x ,~))  genera te  

all the  ma t r i x  units of  M,~(k(Xl , . . . ,  Xn~)). Hence k(a ' ,  b', f )  contains the com- 

plete set of n x n ma t r ix  units. Since the indeterminates  all appea r  as entries 

of the  matr ices  a '  and b', one sees tha t  k(a ' ,b ' , f )  = M~(k(Xl , . . . ,Xn2) )  as 

required. II 

Comment: (i) The  n x n ma t r ix  units which Theorem 1.3 provides in the ring 

k (a', b', f )  coincide wi th  the s tandard  ma t r ix  units  of the ring M~ (k(Xl, • • . ,  x~2 }). 

This  follows, as in Note 1.4, since one can readily verify t ha t  this is t rue  for the 

first co lumn of these sets. 

(ii) We have not  yet de termined the corresponding result for the two relat ions 

fm+n = 0 and afm + fnb = 1. 
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2. T w o  e l e m e n t  r e l a t i o n s  

Compar i son  of the new criteria, in Theorem 1.1 and Theorem 1.7, wi th  the 

cri terion (ii) in the theorem of Robson [8] described in the introduct ion,  leads 

to some na tu ra l  conjectures abou t  the existence of similar cri teria involving only 

two elements.  The  next  result  disposes of the simplest  guess. We thank  the  

referee for this shorter  proof. 

THEOREM 2.1: Let n >_ 3. Then there is no nontrivial ring R having elements a 

and f with f~  = 0 and a f  n-1 q- f a  = 1. 

Proof: Let  R be such a ring. Mult iply the equat ion a f  ~-1 + f a  = 1 on the left 

by f ~ - 2  and on the right by f ,~ - i .  This  yields the equat ion 

f n - l a y n - 1  = y2n-3 = 0 

which by Theo rem 1.3 implies tha t  Enl  = 0 and so tha t  R is trivial.  | 

A similar  a rgument  shows the same for the relations fm+n = 0 and a f  TM + 

f~a  = 1 whenever m ¢ n. A more general result t han  this, replacing the relat ion 

fm+n = 0 by f "  = 0 for some u, can be found in Agnarsson [1]. 

However,  there are some interesting two element criteria. If  one considers the 

explicit  choices of f ,  a and b in the proof  tha t  (i) ~ (ii) in Theo rem 1.1, one 

observes t ha t  b ~ -  1 = a and tha t  b n = 0. Therefore the next  result  follows direct ly 

f rom Theo rem 1.1. 

THEOREM 2.2: The following conditions on a r ing R are equivalent: 

(i) R is a complete n x n m a t r i x  ring; 

(ii) R contains elements b and f such that f n  = 0 and 1 = b'~-l f ~-1 + fb; 

(iii) R contains elements b and f such that f~ = O, b n = 0 and 1 = b n - l f  n-1  + 

fb. | 

In the case of cri terion (iii) above, it is par t icular ly  easy to describe the ring 

over which R is an n x n ma t r ix  ring. 

COROLLARY 2.3: Let R be a r ing containing elements b, f with b n = f~ = 0 and 

b n - l f  ~-I  + fb  = 1. Then R ~_ M ~ ( b n - I R f  ~- l )  ~ M ~ ( f n - l R b ~ - l ) .  

Proof." Note,  f rom Theo rem 1.3, tha t  E i j =  f i - l b ~ - l f n - l b i - 1  defines a set  of 

ma t r i x  units.  In  par t icular  

Eln : bn-l f n-lbn-1 : (1 - fb)b '~-1 : b n-1 
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and similar ly Enl  = f ~ - l .  The  well known fact t ha t  for all i , j  there  is an 

i somorphism R ~- M n ( E i j R E j i ) ,  where E i j R E j i  is a ring with  unit  Ei~, now 

gives the result. | 

One can also obta in  a result which, like Theorem 1.7, has more  symmet ry .  

THEOREM 2.4: Let  i , j , n  be integers with i + j = n. The  following conditions 

on a ring R are equivalent: 

(i) R is a comple te  n x n ma t r i x  ring; 

(ii) R contains elements  b and f such that f~  = 0 and I = bi f f  + fJbJ; 

(iii) R contains elements  b and f such that f n  = O, b ~ = 0 and 1 = bi f f  + fJbJ. 

Proof" To see t ha t  (i) implies the other two conditions, we s imply use the  same 

elements  f and b as in Theorem 2.2 (i.e. those used in the proof  t ha t  (i) ~ (ii) 

in T h e o r e m  1.1). The  reverse implicat ions follow from Theo rem 1.7. II 

Our  next  result,  which concerns k-algebras of the type  described before 

T h e o r e m  1.8, shows tha t  there are other  relat ions on f and b which do not  

produce triviality. Hence, the relations described in Theorem 2.4 do not exhaus t  

the possibilities. 

THEOREM 2.5: Let  k be a noncommuta t i ve  ring and i , j , m , n  be posi t ive  

integers. Let  R be the k-algebra freely generated by elements  b and f subjec t  to 

the relations f m + n  = 0 and bi f  ~ + f~b  j -- 1. Suppose that  i / m  = j / n .  Then  R 

is a non-trivial  (m + n) x (m + n) ma t r i x  ring. 

Proof'. T h a t  R ~- M,~+~(S)  for some ring S is clear f rom T h e o r e m  1.7. To 

establish non-triviali ty,  first let d be any positive integer and define s and t in 

Md(k)  by 

s = e l 2  + e 2 3  + " "  + e d - l , d  a n d  t = e21  + e32  + " ' "  -t- ed,d-1 + e ld .  

Of course, these centralize k and one can readily check tha t  s d = 0, t ha t  t d ~- 1, 

and t ha t  tJ8 j ~- 8d -J r  d - j  = 1 for all j C {1, 2 , . . . ,  d - 1}. 

Next ,  suppose tha t  i / m  = j / n  = p /q  and choose d = (m + n)p. We set b = t q 

and f = s p in Md(k) .  Evident ly  f ,~+n = s d = 0 and 

bi f m + fnbJ = tiqsp m ~- sPntJq 

: tPmsP m ~- sd - -pmtd-P  m 

= 1 .  
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Since these elements in Md(k) satisfy the relations, R is non-trivial. | 

We note, in the above proof, tha t  

b i + j  = t q ( i + j )  = t p ( m + n )  -~ t d = I. 

Hence, for those elements b, f e Md(k), 

bM(i+J)+i f m + fnbN(i+J)+J = 1 

for all positive integers M, N.  One can see from this tha t  the condition, in 

Theorem 2.5, tha t  i / m  = j / n  is not  necessary. I t  would be of interest to  have 

necessary and sufficient conditions upon i, j ,  m, n for such a non-trivial  algebra 

to exist. Some results in this direction appear  in [1]. 

Next  we re turn  to the two element criteria appearing in Theorem 2.2. In  these 

cases, as in Theorem 1.8, the universal k-algebras can be precisely identified. Our  

no ta t ion  is varied to avoid confusion. 

THEOREM 2.6: Let k be a noncommutative ring and R be a k-algebra generated 

by two elements c and f . 

(i) Suppose that c and f satisfy precisely the relations fn  = 0 and c~-l f n-1 + 

f c  = 1. Then R ~- M,~(k[x]) for some indeterminate x. 

(ii) Suppose, in addition, the relation c ~ = 0 is imposed. Then R ~- Mn(k).  

Proof: (i) As in the proof  of Theorem 1.8, one can see tha t  R = M~(S)  for some 

ring S with f = e21 + e32 + " ' "  -~- e . . . .  1 and with c and c ~-1 taking the forms, 

in t ha t  proof, of b and a respectively. The form of b shows tha t  

C : e l 2  --~ e 2 3  -~- • • • -~- e n , n _  1 "~ C l e n l  -~- C 2 e n 2  -~- • • • -9 i- C n e n n  

for some ci 6 S. It  is not  difficult to calculate tha t  the (2, n) entry of c n-1  

is c , .  The form of a shows then tha t  c ,  = 0. Consideration, in turn,  of the 

( 3 , n ) , ( 4 , n ) , . . . , ( n -  1 ,n)  entries of c " -1  demonst ra tes  t ha t  c~_1 = e~_2 = 

. . . .  c2 = 0. Thus  only cl remains unspecified. The fact tha t  the matr ices f ,  as 

above, and 

Ct ---- e l 2  + e 2 3  + " "" -[- e n - - l , n  -~ X e n l  

in M,(k[x]) satisfy the two relations leads, as in the proof  of Theorem 1.8, to  the 

desired conclusion. 

(ii) For c as above, one checks readily tha t  c ~ = el 1. So in this case cl = 0 

and, in a similar fashion, R ~- Mn(k).  | 
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Note  2.7". Theorem 2.6(ii), together with Theorem 2.2, shows tha t  one can 

present the n x n matr ix  ring over any ring k by means of a set of just  two 

generators f ,  c and the three relations 

f n  = O, C n : O, c n - - l f  n - 1  -F f c  = 1, 

ra ther  than  the usual set of n 2 matr ix units and their n 4 + 1 relations. Further-  

more, the elements f and c then have the form 

f : e 2 1  ~-  e 3 2  -Jr " " " -~- en,n--1 

and 

C = e 1 2  + e 2 3  ~-  • • • ~-  e n - l , n  

One should, perhaps,  recall tha t  Albert  [2, page 95] demonst ra ted  the existence 

of a two element generating set for M n ( F )  over a sufficiently large field F ,  and 

used this, in [3], to  show the same for any finite dimensional separable algebra 

over an infinite field. 

3. Application to rings of differential operators 

In this section we will examine certain homomorphic  images of rings of differential 

operators  to which the previous material  is applicable. 

Let R be a ring of prime characteristic p > 0, and $: R --* R be a derivation. 

Let R[t, 5] be the corresponding differential operator  ring, in which we have tr  -- 

rt + 5 ( r )  for all r C R. 

More generally, by induction on m we have 

(4) 
i = 0  

It  is well known tha t  a p- th  power of a derivation in a ring of characterist ic p is 

also a derivation, so we have a set {SP~: n >_ 0} of derivations on R. In  fact we 

note t ha t  for m = pn (4) becomes 

(5) tP~r = rt p~ + 5P~ (r). 
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THEOREM 3.1: Let R[t,5] be as above. I f  n > 0 is an integer such that  1 E 

im(6 p~-I)  and 6 p~ = 0 then R[t, 5]/(t p~) is a nonzero pn x pn matr ix  ring. 

Proof: Let T = t p~-I and A = 6P ~-~. Since 1 E ira(A) there is an s C R with  

A(s)  = 1 and so T s  = s T  + 1. We get by induction on k tha t  A(s  k) = ks k-1. 

Hence by (4) the following holds in R[t, 6], where at  the second step we collect 

t e rms  ending in T and call the sum siT. 
p--1 

i=0 

= s 'T  + A p - l ( s  p - l )  

= s 'T  + (19 - 1)! 

= sIT - 1 

by Wilson 's  theorem.  We know generally about  rings of differential opera tors  

t ha t  R[t, 5] is a free left R-module  with basis {1, t, t 2 , . . .  }. In view of (5) and the 

relat ion 6 pn = 0 we have tP~r = rt  p~ for all r C R. Therefore (t p~) is a proper  

ideal of  R[t, 5] wi th  factor ring R[t, 5]/( t  p~) free as a left R-module  on the basis 

{1, t ,  t 2 , . . . , t P n - 1 } .  

Now in the factor ring R[t, 5]/(tP~), there are elements t, s, s '  satisfying 

J t  p~-I ~- t p~-p~-I (--S p - l )  = 1 

t p~ = 0 .  

So, by T h e o r e m  1.7, R[t, 6]/(t p~) is a pn x pn ma t r ix  ring. | 

Example  3.2: Let n _> 0 be an integer. Consider R = k[xl,  x 2 , . . . ,  Xp~-l] where 

k is a field of characteris t ic  p. Let  6: R --* R be the k-linear derivat ion on R 

defined by 6(xi)  = Xi+l for all i < p ~ - i  and 6(Xp~-l) = 1. Here 6 p~-~ (x~) = 1 

and 6 p~ = 0, showing tha t  one has instances of Theorem 3.1 wi th  arbi t rar i ly  

large n. 

Note  3.3: Let k be  a field of characterist ic p and consider the Weyl a lgebra  

over k defined as A l ( k )  = k[x][t, d d : 1 .  Here ~7(x) = 1 and ( d ) p  = 0, so by 

Theo rem 3.1, A l ( k ) / ( t  p) is a p x p ma t r ix  algebra. In fact it is known t h a t  

k[x][t, d ] / ( t P )  ~- Mp(k[x]) as k-algebras [6, exercise 2ZF, p.42], so here we have 

an example  of R and 6 such tha t  R[t, 6]/(t p) ~- Mp(R) .  This i somorphism does 

not  hold for general  R. For example,  by applying Theorem 3.1 and count ing 

dimensions over k we see tha t  as k-algebras k[x]/(xP)[t, d ] / ( t P )  -~ Mp(k) .  
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